Zoledronic acid in vivo increases in vitro proliferation of rat mesenchymal stromal cells
نویسندگان
چکیده
Background and purpose - Bisphosphonates are widely used in the treatment of bone loss, but they might also have positive effects on osteoblastic cells and bone formation. We evaluated the effect of in vivo zoledronic acid (ZA) treatment and possible concomitant effects of ZA and fracture on the ex vivo osteogenic capacity of rat mesenchymal stromal cells (MSCs). Methods - A closed femoral fracture model was used in adult female rats and ZA was administered as a single bolus or as weekly doses up to 8 weeks. Bone marrow MSCs were isolated and cultured for in vitro analyses. Fracture healing was evaluated by radiography, micro-computed tomography (μCT), and histology. Results - Both bolus and weekly ZA increased fracture-site bone mineral content and volume. MSCs from weekly ZA-treated animals showed increased ex vivo proliferative capacity, while no substantial effect on osteoblastic differentiation was observed. Fracture itself did not have any substantial effect on cell proliferation or differentiation at 8 weeks. Serum biochemical markers showed higher levels of bone formation in animals with fracture than in intact animals, while no difference in bone resorption was observed. Interestingly, ex vivo osteoblastic differentiation of MSCs was found to correlate with in vivo serum bone markers. Interpretation - Our data show that in vivo zoledronic acid treatment can influence ex vivo proliferation of MSCs, indicating that bisphosphonates can have sustainable effects on cells of the osteoblastic lineage. Further research is needed to investigate the mechanisms.
منابع مشابه
Evaluation of Changes in Global DNA Methylation during Osteoblastic Differentiation of Mesenchymal Stem Cells: A Laboratory Study
Background and Objectives: Control processes in osteoblastic differentiation of mesenchymal stem cells are not yet fully understood. Epigenetic mechanisms, especially the methylation of CpG Islands in the promoter of genes, are considered as one of the most important control mechanisms in stem cell differentiation. In the process of differentiation, it is debated whether only the methylation of...
متن کاملOsteogenic Differentiation of Mesenchymal Stem Cells Via Osteoblast- Imprinted Substrate: In Vitro and In Vivo Evaluation in Rat Model
BACKGROUND: Stem cells have great effects in clinical cell-based therapy. Accordingly, controlling the behavior and directing the fate of stem cells cultured in the laboratory is an important issue. OBJECTIVES: The aim of this study was to evaluate osteogenic properties of adipose derived mesenchymal stem cells (ADSCs) which differentiated toward osteogenic linage by osteoblast-imprinted substr...
متن کاملBIO treatment enhances rat marrow-derived mesenchymal stem cell in vitro proliferation and viability
Introduction: Previous investigations have indicated that the presence of BIO (6-Bromoindirubin-3-Oxime) in medium of some cell culture enhances the cell proliferation and viability. The aim of the present study was to investigate the BIO effects on in vitro expansion of rat marrow-derived mesenchymal stem cells (MSCs) culture. Methods: In the present experimental study, bone marrow cells from ...
متن کاملEffect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture
Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...
متن کاملSimvastatin combined with bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis through SDF-1α/CXCR4 pathway
Objective(s): Chemokines are wound mediators that promote angiogenesis during wound healing. We hypothesized that Simvastatin in combination with the bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis via SDF-1α/CXCR4 pathway.Materials and Methods: Under general anesthesia, deep partial-...
متن کامل